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AbstracL We present a first-principles statistical mechanics theory that incorporates the 
calculation of electronic total energies in the local density approximation, configurational 
entropies, vibrational modes and relaxation effects in disordered systems. Applications of the 
theory to the binary Au-Ni system are given using the linear muffin-tin orbital method for the 
total energy calculations, the cluster variation method for the description of the configurational 
entropy and the Debyffiriineisen approximation for the vibrational modes. The solubilities of 
both ends of the phase diagram, calculated with no adjustable parameters, m compared with 
experiment. 

A binary substitutional system can exist in 2" configurations that can be formed by 
occupation of any of the N sites of a lattice by either an A or a B atom. In 
theoretical studies of the energetics of substitutional systems, it is often necessary to find 
the ground-state configuration for a given lattice type, or to calculate finitetemperature 
thermodynamic averages. These applications require, in principle, sampling of the possible 
2" configurations. Even limiting N to -50 sites, this is a formidable task for first-principles 
electronic structure methods as it involves a huge number of calculations. 

A general approach to the energetics of substitutional systems is the cluster expansion 
(CE) [l,2], in which the configurational energy is expressed in terms of effective multisite 
interactions and correlation functions. When the CE converges rapidly, the energies of 
the 2" configurations are approximately linearly dependent. In this case, knowing a few 
of the energies allows us to determine the rest. Thus the advantage of the CE is that it 
extracts information from a small set of structures to make predictions for the energies 
of all other structures. Connolly and Williams [3] proposed to use nb initio total energy 
calculations of ordered compounds together with the a priori knowledge of the multisite 
correlation functions in these compounds in order to obtain the set of effective pairs and 
multisite chemical interactions that could be used to describe the energy of disordered 
alloys. The attractiveness of this inversion method is that it can use all the power of 
ab initio total energy methods. In particularly, self-consistency, exchange and correlation 
effect, use of full potentials, converged total energy expressions and relativistic effects are 
included. Moreover, the results of the electronic structure calculations can be extended 
to include the volume and elastic relaxation effects as well as the lattice vibration effects. 
In pariicular, these last contributions are known to play an important role for systems 
where there is a significant difference in the molar volumes of the constituent elements. 
In this letter, we present preliminary results for the solid-state portion of the Au-Ni phase 
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diagram, emphasizing the different roles played by chemical, vibrational and relaxation-type 
contributions. We make contact with microscopic electronic theory via the linear muffin- 
tin orbital (LMTO) method [4], which is used to calculate the total energies of selected 
compounds in the Au-Ni system. The contributions to the free energy due to relaxations 
will be discussed in terms of volumarelaxation and cell-external-relaxation contributions 
[5,6]. The lattice vibration effects will be incorporated, using a Debye-Griineisen model 
as proposed by Sanchez er af [7]. Thus, all quantities needed to determine the total free 
energies in the framework of the cluster variation method (CVM) [8] are obtained from first 
principles with no adjustable parameters. In the next section, the calculation procedure and 
the theoretical background are briefly reviewed. The final section is devoted to results and 
discussion. 

The central energetic quantities used in the theoretical discussion of phase stability are 
the formation energy AEp(ux) of the ordered compound AfB in the structure U and the 
mixing energy AE,,,ix(x) of a random alloy AI-,B, of composition x. These are defined 
as the excess energies taken with respect to the equivalent amounts of the solid constituents 
A and B at their equilibrium volumes V, and VB on the given lattice: 

AEF(uX) =E,(ord)-[(l-x)E,+xE~] (1) 

AE,,,ix(x)=E,(rand)-[(l - x ) E ~ + x E B ] .  (2) 

6Eo&x) = AEF(o;) - A & d x ) .  

The ordering energy is defined as the difference: 

(3) 
If SE,,d < 0, the random alloy could develop short-range order of the type underlying 

the structure U. When AEF(u) < 0, the long-rangeordered configuration U could become 
a stable 'ground-state smcture' whereas AEF(u) > 0 means that the ordered structure U 

is unstable with respect to phase separation into A and B. To calculate the mixing energy 
AE,,,i.(x) of the random alloy, we use the Ising-like cluster expansion, in which the energy 
of any of the 2N configurations can be mapped into an king Hamiltonian 121 

Eli"&) = vo + K3;Cu) + Kj3i(u)5j(u) + Kjk5;(u)ij(U)ik(u) + . . . (4) 
j<i  k c j c i  

where the V are effective interaction energies for sites, pairs, three bodies etc. In this case, 
the alloy is treated as a lattice problem whereby configuration U is defined by specifying 
the occupation of each of the N lattice sites i by an A atom (where the spin variable is 
3; = +I) or a B atom (ij = -1). 

The interaction energies are found by mapping (4) onto a set of directly calculated 
formation energies AEF(u) for N ,  structures 151: 

We include in (4) N p  trial 'figures' or clusters F (pairs, threebody, four-body, . . .) 
and Nu structures. Solving (5) we find a set of interactions [I+]. Their transferability 
is then examined by using them to predict via (4) the energy of a new set of structures 
U' not included in the inversion scheme of (5). Convergence is tested by comparing 
these predictions with the directly calculated AEF(u') values of (1). The energy of the 
perfectly random alloy is then found by taking the configurational average of (4). i.e. 

We have carried out the formalism described here using in (5) the Nu = 11 structures: 
FCC (A and B), Llz and DOu (A3B), MoPtz (A2B), Llo, L11 and phase 40 (AB). The N F  

AE,,,ix(x) = (AEIsing(U)). 
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clusters used in (4) are (i) VO and V, ('empty' and single site), (ii) V,, the pair interaction 
between first-nearest neighbours and (iii) Vi and V,, the three- and four-body terms. The 
choice of both structures and figures will be discussed in a forthcoming paper [9]. Total 
energies are calculated using the local density scalar-relativistic theory, as implemented by 
the LMTO method [4], including the combined correction terms [IO] in the atomic-sphere 
approximation (ASA). This means that the unit cell i s  divided into overlapping spheres and, 
inside these spheres, the potential is assumed to be spherically symmetric. We include 
basis sets up to 1 = 2 (i.e. d orbitals) and treat the valence electrons scalar relativistically. 
The total energies are calculated for varying volumes in order to locate the equilibrium 
volume. The calculations are considered to converge when the deviation between the input 
and output potential is less than 0.01 &yd. To evaluate integrals over the Brillouin zone, 
we use a uniform mesh of sampling points, which ensure that the total energy converges to 
within 0.05 mRyd per atom. However, some comments have to be made on the sensitivity 
of AE values with respect to the choice of the sphere radii. Indeed, it is known that there 
may be problems with the ASA concerning the comparison between different structures, 
which is the purpose of our study. In the ASA, the non-spherical parts of the potential, 
the higher partial waves and the interstitial region are neglected. The ASA is a reasonable 
approximation provided that there &e very few electrons in the interstitial region, or rather 
that the touching muffin-tin spheres can be substituted by overlapping Wigner-Seitz (ws) 
spheres that fill the electron-containing parts of space but do not overlap more than about 
30% into any one sphere, i.e. SR, + S E  - IR' - RI c 0 . 3 s ~  for all R. However, even with 
these constraints, there is still some degree of freedom in the choice of the ws spheres. 
Equal ws radii lead to unphysically important charge transfer between the alloy constituents 
when atomic volumes of the two species are very different. A guiding principle for choosing 
therelative sphere sizes for an ASA calculation is that the radii should be chosen to be as 
close as possible to the atomic radii of the corresponding elemental solids [IO]. This means 
that the net charge inside any sphere will be rather small, typically a few tenths of the 
charge of an electron. Experience shows that this charge neutrality is valid for~most cases, 
such as the transition-metal-hansition- or noble-metal alloys [lo]. A comparison with the 
results provided by the full-potential method [ l l ]  indicates the validity of such a choice. 

Introduction of the thermal vibration effects can be done using the vibrational free 
energies of the ordered compounds calculated in the Debydriineisen approximation [3]. 
In this case, the electronic binding energy E,(ord) is replaced by the following vibrational 
free energy: 

F,"'b(ord) = E,(ord) + EYb - TS:b (6) 
where EYb and S2b are the thermal vibration energy and the vibration entropy respectively. 
In the Debye-Gruneisen model [E], the vibration energy is given by 

ETb = + 3 k ~ r O ( b / T ) '  (7) 

where kB is the Boltzmann constant, 6'D is the Debye temperature, EO is the zero-point 
energy given as EO = 9/8kBBD, and D(&/T) is the Debye function [12]. The vibrational 
entropy is given by 

(8) 

It should be noted that, by following the original prescription of Morruzi et at [12], the 
Debye temperature 0, is given as 41.63(rB/M)'I2, where M is the average mass, the 
numerical constant is a scaling factor which gives approximate agreement with empirical 
data, and the bulk modulus B is derived from the calculated binding curve. Anharmonic 

S p  = 3k~{4/3D(&/T) - h[l.-eXp(-b/T)]}. 
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effects in the vibrating lattice are usually described in terms of the Griineisen constant, y ,  
which can be defined as y = -8 In @,/a In R, and which gives the volume dependence of 
0,. The CE method of ( l t (5 )  can now be applied using the vibrational free energy F,”b 
of each phase instead of the electronic contribution, E,. Note that, in this case, the set of 
effective interaction energies is not only volume dependent but also temperature dependent. 

Once the effective interaction energies have been derived, the total free-energy functional 
of a phase is given by 

F P  = VF{F(U) - T ~ ’ ” ” ‘ [ [ W J ) } ]  (9) 
F 

where the phase U is specified by a set of correlation functions (cF(u)] defined from the spin 
products in (4) and where Sconf[[(~~(u)]] represents the configurational entropy contribution. 

The rest of the procedure is to minimize the free-energy functional F‘O‘ with respect 
to both the volume R and the set [eF] of correlation functions at a given temperature 
T. It is noted that the tetrahedron approximation of the CVM is employed to evaluate the 
configurational entropy term in (9). We used the Newton-Raphson method to find the 
solution of the non-linear equations. 

The molar volumes and atomic positions in disordered alloys and ordered intermetallic 
compounds generally deviate from what simple rules might suggest (e.g. the Vegard rule, 
or ideal FCC positions for atomic coordinates); we refer collectively to these deviations as 
‘relaxation’. Relaxation exists if there is a size mismatch as in the Au-Ni system. We will 
distinguish ‘volume relaxation’ from ‘sublattice relaxations’. 

Volume relaxation can be obtained in a sequential process as follows. (i) The first 
term is the ‘volume deformation’ energy, i.e., the energy required to change the volumes 
of A and B from their equilibrium volumes VA and V, to the volume V, of the final 
compound U with the composition x .  It vanishes if the constituents are size matched 
and is positive otherwise. Since this contribution depends primarily on x and not on the 
individual configuration, it affects neither the ordering temperature nor relative energies 
of configurations at a fixed composition. It could, however, determine whether or not an 
homogeneous ordered phase will decompose into its constituents. (ii) The second term is 
the energy to form the compound u(V,) in its ideal structure, A and B both being prepared 
at the final volume. This contribution is often called the ‘spin-flip’ energy. 

We can distinguish two levels o f  approximation for ‘volume relaxation’, in the context 
of the CE method. (i) The ‘global: volume relaxation is based on the assumption that 
the effective local volumes occupied by tetrahedron clusters in the disordered alloy are 
independent of their configuration. (ii) The ‘local’ volume relaxation assumes that the local 
volume of each tetrahedron cluster in the alloy is allowed to relax fully to the value found 
in the ordered state. 

The effective cluster interactions as a function of Au composition for a random alloy 
without the contribution of vibrational modes are shown in figure I ,  where the calculations 
are carried out with global volume relaxations V&) or with local volume relaxations V&. 
They show (i) that the absolute value of the nearest-neighbour pair interaction, i.e. V,, is 
over an order of magnitude greater than the other interactions; furthermore, the overall 
behaviour and magnitude of the three- and four-body interactions is similar in both cases; 
(ii) the most significant difference seen in figure 1 is related to the sign of V,. In the local 
volume relaxation, Vz(l) remains essentially constant with composition and is negative, 
indicating phase separation. On the other hand, Vz(g) varies strongly with composition and 
is positive, indicating a short-range ordering tendency in the alloy. For the following, we 
will keep the ‘local’ volume relaxation, which seems to be the most plausible scheme for 
systems with strong size mismatch [7,9]. 



Letter to the Editor L51 

70 

I 2 - 6 0 ~  50 a0 

'Z 30 
n - ~ ~ ~  - --d 

I .. 
-6 z 20 .. 
-8 Vdll 

10 

0 
V d g l  

V3Ir) 
-10 -10 

60 70 80 90 1 0 0  110 120 60 70 80 90 1 0 0  7 1 0  120 

V O l m e  (au? volume la"? 

Figure 1. Calculated effective interactions for the nearest-neighbour (2). tnangle (3). and 
tetrahedron (4) clusten using ( a )  global volume relaxation V,,(g) and (b) local volume relaxanon 
W). 

X ,  

Figure 2. The energy of formation of a random 
alloy without vibrational modes calculated using local 
volume relaxations (dashed line), and local volume 
relaxations with cell-external relaxations (solid line); 
crosses extrapolate to 0 K the expenmental results of 
Hultgren and w-workerr [131. 

x., 
Figure 3. The calculated miscibility gap using the 
relaxation scheme with (0) and without (0) vibrational 
modes. The experimental 1141 phase diagram (t) is 
shown for reference. 

The cell-external-relaxation energy is the energy gained when the unit-cell vectors are 
allowed to relax, e.g., the tetragonal cia ratio for Llo, phase 40 or DO22 structure and 
the orthorhombic cia and b/a ratios in MoRz structure. This term vanishes by symmetry 
for L12 structure. Like the volume deformation, this contribution tends to vanish for size- 
matched systems, but in this case, it depends on the atomic configuration U and energy 
lowering. In figure 2, we plot the energy of formation of the random alloys including 
local volume relaxation with or without cell-external-relaxation effects. We also compare 
our calculated curves with the estimated experimental curve at 0 K deduced from the 
measurements of Hultgren and co-workers [I31 at 1150 K. This extrapolation to 0 K is 
done with the Kirchoff relation and the C,, measurements: 

AH, = AHT, + loT ACp dT. (10) 
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We see that our theoretical scheme predicts, in agreement with experiment, a positive 
energy of mixing. Therefore, the random alloys are unstable with respect to phase 
separation into Ni- and Au-rich phases. Furthermore, the agreement between calculated 
and experimental curves is better for the scheme that includes both types of relaxation. The 
remaining discrepancy is mainly due to the neglect of 'cell-internal' relaxation, which can 
be treated using the full-potential approach coupled with the choice of special structures in 
the CE method. This effect will be discussed in a separate paper [9]. 

The phase diagram calculated using the relaxation scheme, including short-range order 
effects in the tetrahedron approximation of the CVM, with and without the contribution of the 
vibrational modes, is shown in figure 3. Also shown in figure 3 is the experimental Au-Ni 
phase diagram. As seen in the figure, the contribution due to the vibrational modes lowers 
the miscibility gap at its maximum temperature by approximately 200 K. In particular, the 
theory yields good overall agreement with the solubility limits observed experimentally in 
the solid portion of the Au-Ni phase diagram. The critical temperature is still overestimated 
by approximately 150 K. However, in view of the fact that the only input to the calculations 
is the atomic numbers of the constituent elements, and, furthermore, that the model used 
for the vibrational modes is rather simple, we consider the agreement between theory and 
experiment to be very satisfactory. 

In conclusion, we have used a first-principles theory of alloy phase equilibrium based 
on the cluster expansion of the vibrational free energies of configurationally ordered 
compounds, the CVM and the implementation of the volume- and cell-external-relaxation 
scheme. The theory applied to the Au-Ni system yields results in good agreement with 
experiment. The contributions of relaxation dominate the behaviour of the configurational 
energy whereas the contribution of-the vibrational modes was also shown to play an 
important role. This is particularly true in the Au-NI system where there is an appreciable 
difference in the volume of the constituent elements. A more satisfactory result may be 
obtained by incorporating the thermal vibration effects into a lattice that is allowed to distort 
locally. Such an approach will be discussed in a forthcoming paper. 
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